Copied to
clipboard

G = C34:6S3order 486 = 2·35

6th semidirect product of C34 and S3 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C34:6S3, C32:He3:5C2, C33:2(C3:S3), (C3xHe3):14S3, C3.8(He3:5S3), C32:2(He3:C2), C32.15(C33:C2), SmallGroup(486,183)

Series: Derived Chief Lower central Upper central

C1C32C32:He3 — C34:6S3
C1C3C32C33C3xHe3C32:He3 — C34:6S3
C32:He3 — C34:6S3
C1C32

Generators and relations for C34:6S3
 G = < a,b,c,d,e,f | a3=b3=c3=d3=e3=f2=1, ab=ba, ac=ca, ad=da, eae-1=ad-1, faf=a-1, bc=cb, bd=db, ebe-1=bc-1, fbf=b-1, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 1486 in 267 conjugacy classes, 38 normal (5 characteristic)
C1, C2, C3, C3, S3, C6, C32, C32, C32, C3xS3, C3:S3, C3xC6, He3, C33, C33, He3:C2, S3xC32, C3xC3:S3, C3xHe3, C34, C3xHe3:C2, C32xC3:S3, C32:He3, C34:6S3
Quotients: C1, C2, S3, C3:S3, He3:C2, C33:C2, He3:5S3, C34:6S3

Permutation representations of C34:6S3
On 27 points - transitive group 27T154
Generators in S27
(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(10 13 16)(11 14 17)(12 15 18)(19 25 23)(20 26 24)(21 27 22)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 23)(20 26 24)(21 27 22)
(1 3 2)(4 6 5)(7 9 8)(10 12 11)(13 15 14)(16 18 17)(19 20 21)(22 23 24)(25 26 27)
(1 10 20)(2 11 19)(3 12 21)(4 13 24)(5 14 23)(6 15 22)(7 16 26)(8 17 25)(9 18 27)
(10 20)(11 19)(12 21)(13 24)(14 23)(15 22)(16 26)(17 25)(18 27)

G:=sub<Sym(27)| (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (10,13,16)(11,14,17)(12,15,18)(19,25,23)(20,26,24)(21,27,22), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,23)(20,26,24)(21,27,22), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,23,24)(25,26,27), (1,10,20)(2,11,19)(3,12,21)(4,13,24)(5,14,23)(6,15,22)(7,16,26)(8,17,25)(9,18,27), (10,20)(11,19)(12,21)(13,24)(14,23)(15,22)(16,26)(17,25)(18,27)>;

G:=Group( (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (10,13,16)(11,14,17)(12,15,18)(19,25,23)(20,26,24)(21,27,22), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,23)(20,26,24)(21,27,22), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,23,24)(25,26,27), (1,10,20)(2,11,19)(3,12,21)(4,13,24)(5,14,23)(6,15,22)(7,16,26)(8,17,25)(9,18,27), (10,20)(11,19)(12,21)(13,24)(14,23)(15,22)(16,26)(17,25)(18,27) );

G=PermutationGroup([[(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(10,13,16),(11,14,17),(12,15,18),(19,25,23),(20,26,24),(21,27,22)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,23),(20,26,24),(21,27,22)], [(1,3,2),(4,6,5),(7,9,8),(10,12,11),(13,15,14),(16,18,17),(19,20,21),(22,23,24),(25,26,27)], [(1,10,20),(2,11,19),(3,12,21),(4,13,24),(5,14,23),(6,15,22),(7,16,26),(8,17,25),(9,18,27)], [(10,20),(11,19),(12,21),(13,24),(14,23),(15,22),(16,26),(17,25),(18,27)]])

G:=TransitiveGroup(27,154);

39 conjugacy classes

class 1  2 3A···3H3I···3T3U···3AC6A···6H
order123···33···33···36···6
size1271···16···618···1827···27

39 irreducible representations

dim112236
type++++
imageC1C2S3S3He3:C2He3:5S3
kernelC34:6S3C32:He3C3xHe3C34C32C3
# reps11121168

Matrix representation of C34:6S3 in GL6(F7)

100000
020000
004000
000100
000040
000002
,
100000
040000
002000
000100
000040
000002
,
200000
020000
002000
000200
000020
000002
,
400000
040000
004000
000200
000020
000002
,
001000
100000
010000
000001
000100
000010
,
100000
001000
010000
000100
000001
000010

G:=sub<GL(6,GF(7))| [1,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,2],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,2],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C34:6S3 in GAP, Magma, Sage, TeX

C_3^4\rtimes_6S_3
% in TeX

G:=Group("C3^4:6S3");
// GroupNames label

G:=SmallGroup(486,183);
// by ID

G=gap.SmallGroup(486,183);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,49,218,867,2169,303]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*d^-1,f*a*f=a^-1,b*c=c*b,b*d=d*b,e*b*e^-1=b*c^-1,f*b*f=b^-1,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<